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Abstract
We highlight an interesting mapping between the moving breather solutions of
the generalized nonlinear Schrödinger (NLS) equations and the static solutions
of neutral scalar field theories. Using this connection, we then obtain several
new moving breather solutions of the cubic–quintic NLS equation both with and
without uniform phase in space. The stability of some stationary solutions is
investigated numerically and the results are confirmed via dynamical evolution.

PACS numbers: 03.50.−z, 04.20.Jb, 11.10.Lm, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nonlinear Schrödinger (NLS) equation is one of the most celebrated integrable nonlinear
equation which has found application in several areas of physics including the self-focusing of
intense laser beams, Langmuir waves in plasma, the collapse of the Bose–Einstein condensates
(BECs) with attractive interactions, etc [1]. While most of the applications so far are those
of NLS with cubic nonlinearity, in recent years the cubic–quintic NLS (CQNLS) has also
found several applications. Some of these are in nonlinear optics and BEC. For example, in
nonlinear optics, it describes the propagation of pulses in double-doped optical fibers [2] and
in Bragg gratings [3]; in BEC it models the condensate with two- and three-body interactions
[4, 5]. It is thus of considerable interest to obtain exact solutions of the CQNLS and other
generalized NLS equations.

In particular, a considerable amount of attention has been given in the recent decades to
localized solutions of various NLS, although these solutions exist as the hyperbolic limit of

1751-8113/09/475404+23$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/47/475404
mailto:avadh@lanl.gov
http://stacks.iop.org/JPhysA/42/475404


J. Phys. A: Math. Theor. 42 (2009) 475404 A Khare et al

appropriate general elliptic function solutions. This direction has been explored in the context
of an external periodic potential [6] as well as weakly interacting solitary waves in generalized
NLS equations [7]. Herein, we explore analytic elliptic function solutions in the absence of
an external potential.

In this context, it is worth noting the connection between the moving breather solutions of
the generalized NLS equations and the (static) solutions of neutral scalar field theories, known
as Galilean invariance. Consider the generalized NLS equation

iut + uzz + f (|u|2)u = 0, (1)

where f (·) is a real valued algebraic function with f (0) = 0. On using the ansatz

u(z, t) = φ(z − vt − z0) exp {(i/2)v(z − kt − δ)}, (2)

where k = (v2 + 4a)/2v, it is easily shown that u satisfies equation (1) provided φ(x) satisfies
the equation

φxx + f (φ2)φ + aφ = 0, x = z − vt − z0, (3)

which is the static field equation for a scalar field theory with the nonlinear interaction term
f (φ2)φ. This is a traveling wave solution, and can also be posed in x coordinates by the
transformation ∂z → ∂x and ∂t → −v∂x + ∂t , in which case, considering z0 = 0, δ = 0
without any loss of generality, equation (2) can be considered separable in this frame as

u(x, t) = φ(x) exp {(i/2)vx} exp {(i/2)(v2 − 4a)t} = φ̃(x) exp {−iãt}. (4)

Now this Galilean transformed solution is a stationary solution in the traveling frame.
Actually, we can slightly generalize the above ansatz, i.e. consider instead

u(z, t) = φ(z − vt − z0) exp {(i/2)(vz − vkt − δ + η(x))}, x = z − vt − z0. (5)

On equating real and imaginary parts, it is easily shown that, given g, if

η(x) = g

∫ x

0

dx ′

φ2(x ′)
, (6)

and

φxx + f (φ2)φ + aφ = g2

4φ3
, x = z − vt − z0, (7)

with 4a = v(2k − v) as above, then (7) solves (1). (Note that in the traveling frame of x there
would also be an extra nonlinear term due to the first derivative, for v �= 0.)

It thus follows from here that knowing the various static solutions of the scalar field
theory (3) or (7), one can immediately write down the moving breather solutions of the
corresponding NLS model by using equations (1) and (2). Note that the breather solution of
the corresponding NLS model will be uniquely characterized by its five parameters: v, a, g, δ

and z0. In particular, it follows from here that in order to obtain the breather solutions of the
CQNLS equation, which is characterized by

f (|u|2) = b|u|2 + c|u|4, (8)

one needs to obtain the static solutions of the φ2-φ4-φ6 field theory characterized by

φxx + aφ + bφ3 + cφ5 = 0 (9)

in case g = 0, while if g �= 0, then one needs to obtain the solutions of the equation

φxx + aφ + bφ3 + cφ5 − g2

4φ3
= 0. (10)
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Note that in the special case of c = 0, one gets the well-known mapping between the
celebrated (cubic) NLS and φ2-φ4 field theory. If instead one wants to obtain the breather
solutions of the quadratic–cubic NLS characterized by

f (|u|2) = b|u| + c|u|2, (11)

then one needs to obtain the static solutions of the φ2-φ3-φ4 field theory characterized by

φxx + aφ + bφ2 + cφ3 = 0. (12)

We have thus transformed the problem of finding the breather solutions of the generalized
NLS models to that of finding static solutions of neutral scalar field theories with power law
potentials. There is, however, one important difference. In view of the fact that the potential
must be bounded from below, in neutral scalar field theory models, normally one takes the
coefficient of the leading term in the potential to be positive, i.e. in equations (9) and (12), one
takes the coefficient c < 0. However, in the context of the generalized NLS equations, this
coefficient need not necessarily be negative. In fact, usually it is taken to be positive, yielding
bright solitons while if it is negative, then one obtains dark solitons. It is easily seen that
taking the coefficient c > 0 in equations (9) and (12) is equivalent to considering the solutions
of the nonlinear oscillator problem (rather than the field theory problem).

The purpose of this paper is to give exhaustive solutions to the CQNLS as well as
quadratic–cubic NLS equation as given by equation (12). For that purpose we make use of
the known static solutions of the corresponding φ2-φ4-φ6 and φ2-φ3-φ4 field theory as well
as oscillator models and also obtain few new solutions, which, to the best of our knowledge,
had not been explicitly written down before in the literature. Further, we also obtain static
solutions of the field theory φ2-φ4-φ6-φ−2. In this context, it is worth pointing out that recently
we have obtained several static solutions of the coupled φ2-φ4-φ6 [8], φ2-φ3-φ4 [9] as well
as φ2-φ4 [10] models from where we can immediately obtain the solutions in the decoupled
case, for c < 0. Extending these ideas, we also obtain solutions of these models even in the
case c > 0.

The paper is organized as follows. In section 2 we obtain static solutions of the constant
(or linear in the case v �= 0) phase CQNLS problem (i.e. when φ−2 term is absent). In
section 2.2, we investigate the linear stability of some of these solutions numerically. In
particular, we focus on the hyperbolic limit in which our results here are consistent with the
well-known Vakhitov–Kolokolov criterion [11] as well as earlier results for a more general
nonlinearity [12, 13]. Dynamical evolution confirms the stability results and a connection is
observed between the nature of the nonlinearity and the behavior of the unstable evolution.
In particular, in the case c > 0, when b � 0 the solutions tend to blow-up with a self-similar
behavior, while unstable solutions for which b > 0 do not (perturbations are additive). Then,
in section 3 we provide solutions for the φ2-φ4-φ6-φ−2 model as given by equation (10) where
again, each of a, b, c can be either positive or negative. In appendix A we provide static
solutions for the φ2-φ3-φ4 model as given by equation (12) in which case each of a, b, c can
be either positive or negative. These will be relevant in the context of the breather solutions of
quadratic–cubic NLS. For completeness, in appendix B we also provide static solutions for the
φ2-φ4 model as given by equation (11) (with b = 0) where each of a, c can be either positive
or negative. These will be relevant in the context of the breather solutions of the cubic NLS.
Finally, in section 4 we summarize the results and indicate possible relevance of these results.
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2. Solutions of φ2-φ4-φ6 and hence CQNLS model

2.1. Theoretical development

Let us consider solutions of field equation (9). As explained above, once these solutions are
obtained, then the solution of the CQNLS equation are immediately obtained from here by
using equations (1), (2) and (8). We list below eight distinct periodic solutions to the field
equation (9), i.e. the trivial phase case of g = 0. In each case, we also mention the values of
the parameters a, b, c, in particular, if they are positive or negative.

2.1.1. Dark soliton families

Solution I
It is easily shown [8] that

φ = A
√

1 + sn(Bx + x0,m) (13)

is an exact solution to the field equation (9) provided

(5m − 1)B2 = −4a, (5m − 1)A2 = −8ma

b
, 3(5m − 1)b2 = 64mac. (14)

Thus this solution is valid provided b > 0, c < 0 while a > (< or =) 0 depending on if
m < (> or =) 1/5. Here sn(x,m) and cn(x,m), dn(x,m) denote Jacobi elliptic functions
with the modulus m [14, 15].

In the limit m = 1 the periodic solution (13) goes over to the dark soliton solution

φ = A
√

1 + tanh(Bx + x0), (15)

provided
B2 = −a, A2 = −(2a/b), b2 = (16/3)ac. (16)

Thus the dark soliton solution exists to field equation (9) provided a < 0, b > 0, c < 0.

Solution II
It is easily shown [8] that

φ = Asn(Bx + x0,m)√
1 − Dsn2(Bx + x0,m)

, (17)

is an exact solution to the field equation (9) provided

[3D − (1 + m)]B2 = −a, bA2 = 2[2D(1 + m) − m − 3D2]B2,

3b2

4ac
= [2D(1 + m) − m − 3D2]2

D(1 − D)(m − D)[3D − (1 + m)]
. (18)

There are different constraints depending on the value of D. For example if D < 0, then this
solution is valid provided a > 0, b < 0, c > 0. On the other hand, if D > 0 then while the
solution is only valid if c < 0, the signs of a, b depend on the value of D. For example, while
a < (> or =) 0 depending on if D > (< or =) (1 + m)/3, b < (> or =) 0 depending on if
D < (> or =) 1+m−√

1−m+m2

3 . Summarizing

0 < D <
1 + m − √

1 − m + m2

3
, a > 0, b < 0, c < 0,

1 + m − √
1 − m + m2

3
< D <

1 + m

3
, a > 0, b > 0, c < 0,

1 + m

3
< D < m, a < 0, b > 0, c < 0,

D < 0, a > 0, b < 0, c > 0. (19)
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In the limit m = 1, the periodic solution (17) goes over to the dark soliton solution

φ = A tanh(Bx + x0)√
1 − D tanh2(Bx + x0)

, (20)

provided

(3D − 2)B2 = −a, bA2 = 2(3D − 1)(1 − D)B2,
3b2

4ac
= (3D − 1)2

D(3D − 2)
. (21)

Thus the dark soliton solution exists to field equation (9) provided the following constraints
are satisfied:

0 < D < 1
3 , a > 0, b < 0, c < 0,

1
3 < D < 2

3 , a > 0, b > 0, c < 0,

2
3 < D < 1, a < 0, b > 0, c < 0,

D < 0, a > 0, b < 0, c > 0. (22)

Solution III
It is easily shown [8] that

φ = A√
1 − Dsn2(Bx + x0,m)

(23)

is an exact solution to the field equation (9) provided

[3m − (1 + m)D]B2 = −aD, DbA2 = 2[D2 − 2D(1 + m) + 3m]B2,

3b2

4ac
= [D2 − 2D(1 + m) + 3m]2

(1 − D)(m − D)[3m − (1 + m)D]
. (24)

There are different constraints depending on the value of D. For example if D < 0, then this
solution is valid provided a > 0, b < 0, c > 0. On the other hand, if D > 0 then while the
solution is only valid if c < 0, the signs of a, b depend on the value of D. For example, while
a < 0 in the case m � 1/2, for m < 1/2, a < (> or =) 0 depending on if D < (> or =) 3m

(1+m)
.

On the other hand, b > (< or =) 0 depending on if D < (> or =) 1 + m − √
1 − m + m2.

In the limit m = 1, the periodic solution (23) goes over to the bright soliton solution

φ = A√
1 − D tanh2(Bx + x0)

, (25)

provided

(3 − 2D)B2 = −aD, DbA2 = 2(3 − D)(1 − D)B2,
3b2

4ac
= (3 − D)2

(3 − 2D)
. (26)

There are different constraints depending on the value of D. For example if D < 0, then this
solution is valid provided a > 0, b < 0, c > 0. On the other hand, if D > 0 then the solution
is only valid if a < 0, b > 0, c < 0.

It is worth pointing out that for D < 0, solution (23) is not an independent solution but
rather can be easily derived from solution (37) by using well-known transformation formulas
for Jacobi elliptic functions and making use of the translational invariance of the solutions.
However, for D > 0, (23) is an independent solution.
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2.1.2. Bright soliton families

Solution I
It is easily shown that

φ = A
√

1 + cn(Bx + x0,m), (27)

is an exact solution to the field equation (9) provided

(4m + 1)B2 = 4a, (4m + 1)A2 = −8ma

b
, 3(4m + 1)b2 = 64mac. (28)

Thus this solution is valid provided a > 0, b < 0, c > 0.
In the limit m = 1, the periodic solution (27) goes over to the bright soliton solution

φ = A
√

1 + sech(Bx + x0) (29)

provided

5B2 = 4a, 5A2 = −(8a/b), 15b2 = 64ac. (30)

Thus, the bright soliton solution exists to field equation (9) provided a > 0, b < 0, c > 0.

Solution II.1
It is easily shown that

φ = A
√

1 + dn(Bx + x0,m) (31)

is an exact solution to the field equation (9) provided

(4 + m)B2 = 4a, (4 + m)A2 = −8a

b
, 3(4 + m)b2 = 64ac. (32)

Thus this solution is valid provided a > 0, b < 0, c > 0.
In the limit m = 1, the periodic solution (31) goes over to the bright soliton solution (29)

satisfying the constraints (30).

Solution II.2
It is easily shown that

φ = A
√

dn(Bx + x0,m) + k′, k′ = √
1 − m, (33)

is an exact solution to the field equation (9) provided

(4 − 5m)B2 = 4a, bA2 = −2B2k′, cA4 = (3/4)B2. (34)

Thus this solution is valid provided b < 0, c > 0 while a > (< or =) 0 depending on if
m < (> or =) (4/5).

In the limit m = 1, the periodic solution (33) goes over to the bright soliton solution

φ = A
√

sech(Bx + x0), (35)

provided

B2 = −4a, b = 0, cA4 = (3/4)B2. (36)

Thus the bright soliton solution exists to field equation (9) provided a < 0, b = 0, c > 0.

Solution II.3
It is easily shown that

φ = A
√

dn(Bx + x0,m) − k′, k′ = √
1 − m, (37)

is an exact solution to the field equation (9) provided

(4 − 5m)B2 = 4a, bA2 = 2B2k′, cA4 = (3/4)B2. (38)

6
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Thus this solution is valid provided b > 0, c > 0 while a > (< or =) 0 depending on if
m < (> or =) (4/5).

In the limit m = 1, the periodic solution (37) goes over to the bright soliton solution (35)
satisfying the constraints (36).

Solution III
It is easily shown [8] that

φ = Acn(Bx + x0,m)√
1 − Dsn2(Bx + x0,m)

, (39)

is an exact solution to the field equation (9) provided

[2m − 1 − D(2 − m)]B2 = −(1 − D)a, (1 − D)bA2 = 2[(1 + 2D)m − D(D + 2)]B2,

3b2

4ac
= [(1 + 2D)m − D(D + 2)]2

D(m − D)[2m − 1 − D(2 − m)]
. (40)

There are different constraints depending on the value of D. For example if D < 0, then this
solution is valid provided c > 0. On the other hand, the signs of a, b depend on the value
of D < 0. For example, while for m � 1/2, a < 0, and for m < 1/2, a > (< or =) 0
depending on if |D| < (> or =) 1−2m

2−m
. On the other hand b > (< or =) 0 provided |D| < (>

or =) 1 − m +
√

1 − m + m2.
On the other hand, if 0 < D < m, then this solution is valid if c < 0, while the signs

of a, b depend on the value of D > 0. In particular, while a > 0 in the case m � 1/2,
for m > 1/2, a < 0 in the case 0 < D < 2m−1

2−m
while a > 0 provided 2m−1

2−m
< D < m.

On the other hand, b > 0 if 0 < D < −(1 + m) +
√

1 − m + m2, b < 0 in the case
−(1 + m) +

√
1 − m + m2 < D < m.

In the limit m = 1, the periodic solution (39) goes over to the bright soliton solution

φ = Asech(Bx + x0)√
1 − D tanh2(Bx + x0)

, (41)

provided

B2 = −a, bA2 = 2(1 + D)B2,
3b2

4ac
= (1 + D)2

D
. (42)

Thus, the bright soliton solution exists to field equation (9) provided the following constraints
are satisfied

0 < D < 1, a < 0, b > 0, c < 0,

−1 < D < 0, a < 0, b > 0, c > 0,

D < −1, a < 0, b < 0, c > 0. (43)

Solution IV
It is easily shown [8] that

φ = Adn(Bx + x0,m)√
1 − Dsn2(Bx + x0,m)

(44)

is an exact solution to the field equation (9) provided

[2m − m2 − D(2m − 1)]B2 = −(m − D)a,

(m − D)bA2 = 2[(1 − 2D)m − D(D − 2)]B2,

3b2

4ac
= [(1 − 2D)m − D(D − 2)]2

D(1 − D)[2m − m2 − D(2m − 1)]
. (45)

7
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There are different constraints depending on the value of D. For example if 0 < D < m, then
this solution is valid provided a < 0, b > 0, c < 0.

On the other hand, if D < 0, then this solution is valid if c > 0, while the signs of
a, b depend on the value of D < 0. In particular, while a < 0 in the case m � 1/2, for
m < 1/2, a < 0 in the case 0 < |D| < m(2−m)

1−2m
while a > 0 provided m(2−m)

1−2m
< D < m.

On the other hand, b > 0 if 0 < D < −(1 − m) +
√

1 − m + m2 while b < 0 in the case
−(1 − m) +

√
1 − m + m2 < D < m.

In the limit m = 1 the periodic solution (44) goes over to the bright soliton solution (41)
satisfying the constraints as given by equations (42) and (43).

It is worth pointing out that for D > 0, solution (44) is not an independent solution
but rather can be easily derived from the solution (39) by using well-known transformation
formulas for Jacobi elliptic functions and making use of the translational invariance of the
solutions. However, for D < 0, (44) is an independent solution.

2.2. Numerical solutions and stability analysis

We will now look at some of the particular solutions presented above and investigate their
stability properties both through a systematic linear stability analysis and also dynamical
evolution. In particular, we consider exhaustively the various regimes of hyperbolic dark
and bright soliton solutions with the trivial phase from section 2.1, as well as some elliptic
examples from the same section. In considering the structural linearized stability, we will
consider the static reference frame (i.e. v = 0) and focus on the stationary wave solutions. Such
stationary solutions have Galilean invariance, yielding the ansatz for the traveling wave given
in equation (3). Although, assuming a traveling reference frame and Galilean transformations
of the perturbations as well, the equations for dynamical stability of static (v = 0) and traveling
wave (v �= 0) solutions are equivalent. We note that above the Landau critical velocity, the
solution will be the so-called Landau-unstable [16], although this instability is not expected
to have any effect in the absence of any external potential, and is usually investigated in the
presence of an external impurity [17] or lattice [18]. Given a solution φ of (3), we consider the
linearization of equation (1) around this stationary solution, i.e. assume the following ansatz,
for ε � 1:

u(z, t) = e−iat [φ(z) + εũ(z, t)]. (46)

Assuming ũ = w(x)eiλt is separable then we have the following linearization system:(
L1 L2

−L∗
2 −L∗

1

)
V = λV.

The blocks are given by

L1 = a + ∂xx + 2b|φ|2 + 3c|φ|4,
L2 = bφ2 + 2c|φ|2φ2.

This eigenvalue problem, commonly known as the Bogoliubov system, has been solved
with both the MATLAB functions eig in which the full matrix is diagonalized and eigs, which
implements the standard ARPACK Arnoldi iterative algorithm to solve for the smallest/largest
n eigenvalues. In particular, the latter, quicker and more efficient method for evaluating a
particular subset of eigenvalues is used for exhaustive continuations and benchmarking over
much finer spatial grids, while agreement is found in all cases in which both methods are used.

8



J. Phys. A: Math. Theor. 42 (2009) 475404 A Khare et al

−20 0 20
0

2

4

6

8

10

x

|φ
|2

−20 0 20
−1

−0.5

0

0.5

1
x 10

−5

Re(λ)

Im
(λ

)

t

x

|u(x,t)|

 

 

0 500 1000

−15

−10

−5

0

5

10

15

0.5

1

1.5

2

2.5

3

Figure 1. Left: dark soliton solution I with m = 1, a = −2, b = 1 (left), and the linearization
spectrum as computed by equation (46). Right: dynamical evolution of u = φ + r , where
r = pmax|φ(x, 0)|2U , p = 0.05, U is a uniformly distributed random variable in (0, 1), and φ

is solution I with m = 1, a = −2, b = 1, as shown to the left. The stability is confirmed as the
solution sustains only minor oscillations from its original form after the 5% perturbation.

2.2.1. Dark soliton families. For the first family of solutions given by equations (13,15), the
hyperbolic tangent (m = 1, equation (15)) (also known as ‘kink’, or ‘dark soliton’) solution
was found to be stable, just like in the case of the cubic NLS. An example solution is presented
in the left panels of figure 1 for a = −2 and b = 1. Continuations of these solutions
for (a, b) ∈ [−2,−0.1] × [0.01, 1] were performed and there was no deviation from this
stability result. It seems reasonable to conclude that this is universal, although we did not
do an exhaustive search of parameter space. The stability results were then confirmed with
dynamical evolution using a standard fourth-order Runge–Kutta method. The right panel of
figure 1 displays the result of evolving u = φ + r , where r = pmax|φ(x, 0)|2U , p = 0.05
and U is a uniformly distributed random variable in (−1, 1). Note that even with this large
perturbation, the robust structure persists for up to at least t = 1000, experiencing only minor
oscillations around the stationary solution.

It is most likely a result of the fact that the solutions for m �= 1 are ‘very nearly non-
differentiable’ that, even with appropriately matched periodic boundary conditions, the norm
difference of the exact solution with the one on the numerical grid is orders of magnitude
larger than that of the hyperbolic kin. This prevents such a systematic numerical analysis of
the stability, although using the exact solution as an initial guess for a fixed point solver on
the numerical grid, the solution does converge to a smoother version which is wildly unstable,
and this suggests that these solutions are unstable.

Next, we consider the smoother family of dark soliton solutions II given in equations (17)
and (20). For the hyperbolic solutions (m=1), equation (20), a representative value of D
was chosen for all the intervals defined in equation (22), with the exception of the interval
2/3 < D < 1, where the signs of b and c are the same as those of solution I above. For
each of these values of D ∈ {−0.2, 0.1, 0.35}, a two-parameter continuation was done for
the corresponding values of (|a|, |b|) ∈ [0.1, 1] × [0.01, 1]. All solutions were found to
be stable. Some periodic solutions (m �= 1) from this smoother family were also found.
For certain parameters, the solutions are actually stable, while for others, they are very
unstable. The unstable solution for (a, b,D,m) = (0.75, 1, 0.3, 0.7), and the stable one for
(a, b,D,m) = (0.1, 0.5, 0.3, 0.5) as given in equation (17) and their linearization spectra are
shown in figure 2. We note here that the Floquet theorem has been invoked in conjunction with
periodic boundary conditions, since the stability matrix of the periodic solution is periodic, in
order to scan the infinite energy spectrum with a subdivision of 200 separate spatial frequencies
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Figure 2. The left two panels show the dark soliton solution II (left) with unstable parameters
(a, b,D, m) = (0.75, 1, 0.3, 0.7) and the linearization spectrum is on the right as given by
equation (46). The right panels show a solution from the same family but for a set of parameters
for which the solution is stable, (a, b, D, m) = (0.1, 0.5, 0.3, 0.5).
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Figure 3. The left panel is the dark soliton solution II with unstable parameters (a, b, D, m) =
(0.75, 1, 0.3, 0.7) from the left of figure 2, while the right is for the unstable parameters
(a, b,D, m) = (1.5, 1.5, 0.5, 0.99).

out of the infinitely many. Notice the continuum of eigenvalues with the negative imaginary
part which form loops symmetric with respect to both the real and imaginary axes (the
symmetry is a result of the fact that the matrix is Hamiltonian). The dynamics of the unstable
solution with (a, b,D,m) = (0.75, 1, 0.3, 0.7) from the left panels of figure 2 are shown
on the left panel of figure 3. The linear instability has almost no discernible effect on the
evolution even with a very large 25% perturbation of the initial amplitude. Somehow the
stability properties of the hyperbolic limit are ‘inherited’ by its family, regardless of the
stability of the linearized system. This presumably has to do with this solution residing at a
small steep local maximum of the energy within a large basin, in which a small perturbation is
enough to leave the linear regime, but not to significantly alter the structure of the solution (the
unstable eigenfunctions are presumably of a very similar form as the solution). We believe this
‘nonlinear stability’ is an interesting phenomenon, but is outside the scope of this paper and
will be investigated further elsewhere. The right panel shows the evolution of another unstable
solution from this family for parameter values (a, b,D,m) = (1.5, 1.5, 0.5, 0.99), where the
instability has a greater effect, but still rather negligible and at long times considering the
large perturbation. Many other unstable solutions from this family were evolved with large
perturbations and this was the most unstable among them.

2.2.2. Bright soliton families. Next we turn to the bright soliton solutions. Now the
hyperbolic [m = 1, equation 29] solution (namely ‘pulse’, ‘bright soliton’ or just ‘soliton’)
is actually unstable (see, e.g. [12]). This is markedly different from the cubic NLS case,
where the analogous solution is stable. This can be connected to the fact that it is well-known
that the H1 norm (or, energy) of the solution to equation (1) for f (x) = x2σ is bounded for
σ < 2/d, where d is the dimensionality of the problem [13]. The value σ is known as the
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Figure 4. Left panels are the bright soliton solution I with m = 1, a = 1, b = −1 (left), and
its linearization spectrum. Right panels depict the power (left, given on a log scale) and stability
(right), as indicated by the maximum imaginary part of the spectrum, of a two-parameter family
of bright soliton solutions I (of equation (29) with m = 1 and (a, b) ∈ [0.4, 1] × [−0.01,−1].

Figure 5. Dynamical evolution of u = φ + r , where r = pmax|φ(x, 0)|2U , p = 0.05, U is a
uniformly distributed random variable in (0, 1) and φ is solution I with m = 1, a = 1, b = −1,
as shown if figure 4. The stability is confirmed and the solution collapses with exponentially
self-similar nature. A log scale is used for the intensity to illustrate this.

critical exponent, and in our case of d = 1, we have σ = 4. This is the smallest power
nonlinearity for which blowup can occur, corresponding to an exact balance between kinetic
and potential energies under the constraint of conserved mass. The solution and its stability
are presented in the left panels of figure 4. A two-parameter continuation in the parameters
a and b (with c determined by them) was performed in order to confirm that the family of
solutions is always unstable in the region (a, b) ∈ [0.4, 1] × [−1,−0.01], as presented in the
right panels of figure 4. The stability here can also be understood in terms of the Vakhitov–
Kolokolov criterion [11], since dN/da > 0 (where N = ∫ |u|2 dx). The small region of stable
solutions with very large amplitudes for very small b are actually constant solutions, since for
increasing b the amplitude of the soliton shrinks, while the ‘pedestal’ (plane wave i.e. constant
background) it is sitting on grows. The dynamical evolution given in figure 5 confirms the
prediction and that the solution collapses around t = 15. The collapse of the waveform is
presented on a log scale so it can be appreciated.

It is interesting to note that the instability to collapse appears to be correlated to the sign
of the cubic term for the bright solitons (again consistent with the findings of [12]). That is
to say, those bright solitons we found for which b > 0 were stable, while for b < 0 they
were unstable (c > 0 of course). In particular, we now turn to solutions of equation (39).
Two-parameter continuations were performed for D ∈ {−1.5,−0.3,−0.1, 0.1, 0.6} and
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Figure 6. Top: bright soliton solution II.2 with (a, b,m) = (−0.15,−1, 0.9), (c ≈ 1.56).
The linearization spectrum is given in the middle as defined in equation (46), and the
dynamical evolution is to the right. Bottom: bright soliton solution III with (a, b,m,D) =
(−0.1, 1, 0.4,−0.3) (c ≈ 0.98).

(|a|, |b|) ∈ [0.1, 1] × [0.01, 1], and the last four were invariably stable, for all of which
b > 0 (for the former two c > 0 and for the latter two c < 0). For the first value of D the
corresponding b is negative (and of course c > 0) and, as in solution I, the solution is unstable
in the entire parameter region. It should be noted that the solution in equation (35) where
b = 0 and c > 0 is linearly stable as the imaginary pair of eigenvalues for b > 0 pass through
the origin and become real for b < 0. This extra pair of eigenvalues is in addition to one pair
associated with phase invariance, δ in equation (2), and one pair associated with translational
invariance, z0 in equation (2), and is due to the conformal invariance of the soliton solution
of the critical NLS. This solution is, hence, unstable to collapse as well, despite its linear
stability, a condition that can be called ‘nonlinear instability’ [13].

Most solutions were found to be unstable, and in fact, no bright soliton family solutions
for m �= 1 were found that are stable, although in the high-dimensional parameter space among
the infinitely many solutions, we by no means discount the possibility that such solutions may
exist. As examples, we present the solution II.2 for the values (a, b,m) = (−0.15,−1, 0.9)

as given in equation (33) and the solution III for values (a, b,m,D) = (−0.1, 1, 0.4,−0.3).
The solution with b < 0 (solution II.2, figure 6) does exhibit a collapse phenomenon like the
unstable soliton, while the one with b > 0 (solution III) does not.

3. Solutions of φ2-φ4-φ6-φ−2 and hence CQNLS model

Let us consider solutions of field equation (10). As explained above, once these solutions
are obtained, then the solution of the CQNLS equation are immediately obtained from here
by using equations (1), (5), (6), (7) and (8). We list below five distinct solutions to the field
equation (10) out of which four are periodic.

12
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Solution I
It is easily shown that

φ =
√

Asn(Gx + x0,m) + B

Dsn(Gx + x0,m) + F
(47)

is an exact solution to the field equation (10) provided the following five coupled equations
are satisfied:

mG2(AF − BD)(3AF + BD) = g2D4 − 4A2(aD2 + bAD + cA2), (48)

G2(AF − BD)[2mBF + (1 + m)AD] = 2g2D3F − 4aAD(AF + BD)

− 2bA2(AF + 3BD) − 8cA3B, (49)

(1 + m)G2(AF − BD)2 = −6g2D2F 2 + 4a(A2F 2 + B2D2 + 4ABDF)

+ 12bAB(AF + BD) + 24cA2B2, (50)

G2(AF − BD)[2AD + (1 + m)BF ] = −2g2DF 3 + 4aBF(AF + BD)

+ 2bB2(3AF + BD) + 8cAB3, (51)

−G2(AF − BD)(AF + 3BD) = g2F 4 − 4B2(aF 2 + bBF + cB2). (52)

Thus we have five coupled equations relating the five parameters A,B,D,G, g (note that we
can always remove one of the parameter from the ansatz (47)). In the special case of m = 1,
the solution (47) goes over to the hyperbolic soliton solution

φ =
√

A tanh(Gx + x0) + B

D tanh(Gx + x0) + F
, (53)

while in the limit m = 0, it goes over to the trigonometric solution

φ =
√

A sin(Gx + x0) + B

D sin(Gx + x0) + F
. (54)

In the special case of D = 0, F = 1, we obtain a simpler solution

φ =
√

Asn(Gx + x0,m) + B, (55)

provided

a < 0, c < 0, G2 = 9b2 − 32|a||c|
8|c|(1 + m)

, A2 = 3mG2

4|c| , B = 3b

8|c| , (56)

while g for this solution is given by

g2 = 4B2(a + bB + cB2) − A2G2

= 3

[32(1 + m)]2|c|3 [192b2|a||c|(10m − 1 − m2)

− (64|a||c|)2m − 9b4(26m − 5 − 5m2)]. (57)

It is easily checked that as long as g �= 0, such a solution does not exist for m = 1, even
though it exists for a range of values of m < 1. Also note that the solution (55) does not exist
in the trigonometric limit of m = 0 unless c = 0.
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Solution II
Yet another solution to the field equation (10) is

φ =
√

Acn(Gx + x0,m) + B

Dcn(Gx + x0,m) + F
(58)

provided the following five coupled equations are satisfied:

mG2(AF − BD)(3AF + BD) = −g2D4 + 4A2(aD2 + bAD + cA2), (59)

G2(AF − BD)[2mBF + (2m − 1)AD] = −2g2D3F + 4aAD(AF + BD)

+ 2bA2(AF + 3BD) + 8cA3B, (60)

(2m − 1)G2(AF − BD)2 = 6g2D2F 2 − 4a(A2F 2 + B2D2 + 4ABDF)

− 12bAB(AF + BD) − 24cA2B2, (61)

G2(AF − BD)[2AD(1 − m) − (2m − 1)BF ] = −2g2DF 3 + 4aBD(AF + BD)

+ 2bB2(3AF + BD) + 8cAB3, (62)

−(1 − m)G2(AF − BD)(AF + 3BD) = g2F 4 − 4B2(aF 2 + bBF + cB2). (63)

In the special case of m = 1, the solution (58) goes over to the hyperbolic soliton solution

φ =
√

Asech(Gx + x0) + B

Dsech(Gx + x0) + F
, (64)

while in the limit m = 0, it goes over to the trigonometric solution

φ =
√

A cos(Gx + x0) + B

D cos(Gx + x0) + F
. (65)

In the special case of D = 0, F = 1, we obtain a simpler solution

φ =
√

Acn(Gx + x0,m) + B, (66)

provided

c > 0, G2 = 9b2 − 32ac

8c(2m − 1)
, A2 = 3mG2

4c
, B = −3b

8c
, (67)

while g for this solution is given by

g2 = 4B2(a + bB + cB2) − (1 − m)A2G2

= 3

[32(2m − 1)]2c3
[192b2ac(1 + 8m − 8m2)

− (64ac)2m(1 − m) − 9b4(5 + 16m − 16m2)]. (68)

Thus, unlike solution (55), such a solution always exists in the hyperbolic limit so long as
32ac < 9b2 < (192/5)ac. Further, it also exists for a range of values of m, though it does not
exist in the m = 0 limit, unless c = 0.

In the special case of m = 1/2, we obtain a one-parameter family of solutions of the form
(66). In particular, in that case it follows from equation (67) that

9b2 = 32ac, A2 = 3G2

8c
, B = −3b

8c
, g2 = a2

3c
− 4cA4

3
. (69)

It is worth noting that while A,G are arbitrary with their ratio being fixed, the only constraint
that we have is that A2 < a

2c
so that g is nonzero and real.
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Unlike the sn case, in this case solutions exist even in the case A = 0 (and assuming
B = 1 without any loss of generality). In particular,

φ = 1√
Dcn(Gx + x0,m) + F

(70)

is an exact solution to equation (10) provided

mG2 = g2D2, 3(1 − m)D2G2 = g2F 4 − 4(aF 2 + bF + c),

(2m − 1)G2 = 2(3g2F 2 − 2a), 4g2F 3 = b + 4aF. (71)

Note that such a solution exists in the hyperbolic limit (m = 1) but not in the trigonometric
limit (m = 0).

Solution III
Yet another solution to the field equation (10) is

φ =
√

Adn(Gx + x0,m) + B

Ddn(Gx + x0,m) + F
(72)

provided the following five coupled equations are satisfied:

− G2(AF − BD)(3AF + BD) = g2D4 − 4A2(aD2 + bAD + cA2), (73)

G2(AF − BD)[2BF + (2 − m)AD] = −2g2D3F + 4aAD(AF + BD)

+ 2bA2(AF + 3BD) + 8cA3B, (74)

(2 − m)G2(AF − BD)2 = 6g2D2F 2 − 4a(A2F 2 + B2D2 + 4ABDF)

− 12bAB(AF + BD) − 24cA2B2, (75)

G2(AF − BD)[2AD(1 − m) − (2 − m)BF ] = −2g2DF 3 + 4aBD(AD + BF)

+ 2bB2(3AF + BD) + 8cAB3, (76)

(1 − m)G2(AF − BD)(AF + 3BD) = g2F 4 − 4B2(aF 2 + bBF + cB2). (77)

In the special case of m = 1, the solution (72) goes over to the hyperbolic soliton solution (64).
In the special case of D = 0, F = 1, we obtain a simpler solution

φ =
√

Adn(Gx + x0,m) + B, (78)

provided

c > 0, G2 = 9b2 − 32ac

8c(2 − m)
, A2 = 3G2

4c
, B = −3b

8c
, (79)

while g for this solution is given by

g2 = 4B2(a + bB + cB2) + (1 − m)A2G2

= 3

[32(2 − m)]2c3
[192b2ac(m2 + 8m − 8)

+ (64ac)2(1 − m) + 9b4(16 − 16m − 5m2)]. (80)

Like the cn case, in this case too solutions exist in the case A = 0 (and assuming B = 1
without any loss of generality). In particular,

φ = 1√
Ddn(Gx + x0,m) + F

(81)
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is an exact solution to equation (10) provided

G2 = g2D2, 3(1 − m)D2G2 = −g2F 4 + 4(aF 2 + bF + c),

(2 − m)G2 = 2(3g2F 2 − 2a), 4g2F 3 = b + 4aF. (82)

Note that this solution is valid for all values of m including the hyperbolic limit of m = 1.
However, unlike the cn case, in this case solution exists even in the case B = 0 (and

assuming A = 1 without any loss of generality). In particular

φ =
√

dn(Gx + x0,m)

Ddn(Gx + x0,m) + F
(83)

is an exact solution to equation (10) provided

(1 − m)G2 = g2F 2, 3F 2G2 = −g2D4 + 4(aD2 + bD + c),

(2 − m)G2 = 2(3g2D2 − 2a), 4g2D3 = b + 4aD. (84)

Note that such a solution does not exist in the hyperbolic limit so long as g �= 0.

Solution IV
It is easily shown that

φ =
√

Asn2(Gx + x0,m) + B

Dsn2(Gx + x0,m) + F
(85)

is an exact solution to the field equation (10) provided the following five coupled equations
are satisfied:

4mG2AD(AF − BD) = −g2D4 + 4A2(aD2 + bAD + cA2), (86)

G2(AF − BD)[2mAF + 2(1 + m)AD] = g2D3F − 2aAD(AF + BD)

− bA2(AF + 3BD) − 4cA3B, (87)

2G2(AF − BD)[3mBF − (1 + m)AF + (1 + m)BD − 3AD]

= 3g2D2F 2 − 2a(A2F 2 + B2D2 + 4ABDF) − 6bAB(AF + BD) − 12cA2B2, (88)

2G2(AF − BD)B[D + (1 + m)F ] = −g2DF 3 + 2aBF(AF + BD)

+ bB2(3AF + BD) + 4cAB3, (89)

4G2(AF − BD)BF = g2F 4 − 4B2(aF 2 + bBF + cB2). (90)

Thus, we have five coupled equations relating the five parameters A,B,D,G, g. In the special
case of m = 1, the solution (85) goes over to the hyperbolic soliton solution

φ =
√

A tanh2(Gx + x0) + B

D tanh2(Gx + x0) + F
, (91)

while in the limit m = 0 it goes over to the trigonometric solution

φ =
√

A sin2(Gx + x0) + B

D sin2(Gx + x0) + F
. (92)

16



J. Phys. A: Math. Theor. 42 (2009) 475404 A Khare et al

Solution V
The field equation (10) also has a remarkable nonperiodic solution given by

φ =
√

Ax2 + B

Dx2 + F
, (93)

provided the following five relations are satisfied
g2D4 = 4A2(aD2 + bAD + cA2), (94)

g2D3F = 2aAD(AF + BD) + bA2(AF + 3BD) + 4cA3B, (95)

6AD(AF − BD) + 3g2D2F 2 = 2a(A2F 2 + B2D2 + 4ABDF)

+ 6bAB(AF + BD) + 12cA2B2, (96)

2BD(AF − BD) + g2DF 3 = 2aBF(AF + BD)

+ bB2(3AF + BD) + 4cAB3, (97)

g2F 4 = 4BD(AF − BD) + 4B2(aF 2 + bBF + cB2). (98)

3.1. Stability of the nonlinear phase-modulated solutions

We now briefly discuss the stability of the nonlinear phase-modulated solutions presented in
this section. We emphasize that dynamical instability is unaffected by a non-trivial linear phase
factor, corresponding to a traveling frame x → x − vt as described in section 1. However, it
is not clear a priori what the physical relevance may be of a solution with the nonlinear phase,
such as those presented here. Also, none of the solutions presented here are related in any way
to the stable family of solutions from the preceding section. In fact, only solution I could be
considered among the dark soliton family, but it does not exist for m = 1, and is not similar
in form to the stable solution from the previous section. Additionally, the question of finding
these solutions numerically is significantly more challenging than the trivial phase solutions,
at least for the periodic amplitude ones, owing to the necessity of finding suitable parameters
which satisfy systems of coupled nonlinear equations and lead to admissible (real-valued) and
nontrivial solutions. We do not expect these solutions to be more stable than their trivial phase
counterparts from the previous section. Therefore, while the solutions presented herein are
valid and interesting in their own right, we do not investigate their stability in detail here.
Nonetheless, for illustrative purposes we briefly explain the methodology and then present
two solutions and their stability, one at the hyperbolic limit, m = 1, and one elliptic solution.

The criteria in this section for the ten parameters involved in the equation and
corresponding solution consist, in general, of five coupled nonlinear equations, for which
one can choose five parameters and solve for the remaining five with Newton’s method, for
instance. In this way, one often finds that A/B = D/F, which is a trivial solution, or that the
parameters either are imaginary or lead to imaginary solutions.

Once the solution φ to equation (10) is found, the solution u = φ exp {i(g/2)η} must be
found in a numerical domain in order to examine its stability. This leads to the additional
resonance condition that there exist integers n and k such that

nπ/g = kP (m,G), (99)

where P(m,G) = 4K(m)/G is the period of the elliptic function φ and K(m) is the complete
elliptic integral of the first kind [14, 15]. The domain has to be then truncated at the period
of η, and of φ in the case m �= 1. If m = 1, we choose one period of η as the domain, i.e.
{L; η = π/g}. For m �= 1, we determine (n∗, k∗) = argmin{(n, k); nπg = kP (m,G)} and
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Figure 7. The top panels depict solution and phase and the bottom panels show the
linear spectra. The left-hand solution is the elliptic solution given in equation (66) with
(a, b, c, m, g, A, B, D, F, G) = (0.5077,−0.9501, 0.5, 0.5, 0.4145, 0.1, 0.7126, 0, 1, 0.1155),
while the right-hand solution is for the hyperbolic limit with (a, b, c, m, g, A, B, D, F, G) =
(1, −2, 1, 1, 0.375, 0.6124, 0.75, 0, 1, 0.7071).

then truncate the domain at {L; η = nπ/g}. As displayed in figure 7, the stability does not
differ significantly qualitatively from the solutions with the trivial phase (compare with the
solutions in figures 4 and 6 top), except the hyperbolic solution is now periodic in phase and,
hence, has a continuum of unstable eigendirections. The dynamics of both these solutions,
when perturbed with additive noise, results in collapse, as in the case of the trivial phase.

4. Conclusions

To conclude, a large array of exact analytical solutions to various field theories were found
leading directly to various exact solutions of cubic–quintic NLS and their stability and
dynamics were studied numerically. The majority of these are oscillatory solutions which
are unstable; however, some are found to be linearly stable, such as some elliptic solutions
from the dark soliton family solution II for appropriate parameter regimes. Also many
hyperbolic dark solitons were found to be stable and quite robust over a range of parameter
values. The hyperbolic bright soliton solutions were found to be unstable to collapse when
the cubic term is defocusing or nonexistent and the quintic term is focusing, while they were
found to be always stable when the cubic term is focusing, for both focusing and defocusing
quintic term (at least within the parametric regions examined herein). Some periodic solutions
with defocusing and focusing cubic and quintic nonlinear terms, respectively, also displayed
the collapse phenomenon, while ones with a focusing cubic term did not.
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Appendix A. Solutions of φ2-φ3-φ4 and hence quadratic–cubic NLS model

Let us consider solutions of field equation (12). As explained above, once these solutions are
obtained, then the solution of the quadratic–cubic equation are immediately obtained from
here by using equations (1), (2) and (11). We list below eight distinct periodic solutions to
the field equation (12). In each case, we also mention the values of the parameters a, b, c, in
particular, if they are positive or negative. However, instead of equation (12), we use a slightly
different form given by

φxx + 2aφ + 3bφ2 + 4cφ3 = 0. (100)

This is done so that one can easily pick up the solutions recently obtained by us in a related
paper on coupled φ2-φ3-φ4 field theory [9].

Solution I
It is easily shown [9] that

φ = F + Asn(Bx + x0,m) (101)

is an exact solution to the field equation (100) provided

(1 + m)B2 = −a, 2(1 + m)cA2 = ma, b = −4cF, b2 = 4ac. (102)

Thus this solution is valid provided a < 0, c < 0 while b could be positive or negative.
In the limit m = 1, the periodic solution (101) goes over to the dark soliton solution

φ = F + A tanh(Bx + x0), (103)

provided

2B2 = −a, 4cA2 = a, b = −4cF, b2 = 4ac. (104)

Thus, the dark soliton solution exists to field equation (100) provided a < 0, c < 0 while b
could be positive or negative.

Solution II
It is easily shown [9] that

φ = F + Acn(Bx + x0,m), (105)

is an exact solution to the field equation (100) provided

(2m − 1)B2 = a, 2cA2 = mB2, b2 = 4ac, b = −4cF. (106)

Thus this solution is valid provided a > 0, c > 0 while b could be positive or negative. Note
also that this solution exists only if m > 1/2.

In the limit m = 1, the periodic solution (105) goes over to the bright soliton solution

φ = F + Asech(Bx + x0), (107)

provided

B2 = a, 2cA2 = B2, b2 = 4ac, b = −4cF. (108)

Thus the bright soliton solution exists to field equation (100) provided a > 0, c > 0 while b
could be either positive or negative.
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Solution III
It is easily shown [9] that

φ = F + Adn(Bx + x0,m) (109)

is an exact solution to the field equation (100) provided

(2m − 1)B2 = a, 2cA2 = B2, b2 = 4ac, b = −4cF. (110)

Thus this solution is valid provided a > 0, c > 0 while b could be either positive or negative.
Note also that unlike solution II, this solution is valid for any m (0 � m � 1).

In the limit m = 1 the periodic solution (109) goes over to the bright soliton solution
(107) and hence satisfies constraints given by equation (108).

Solution IV
It is easily shown [9] that

φ = F +
Asn(Dx + x0,m)

1 + Bdn(Dx + x0,m)
(111)

is an exact solution to the field equation (100) provided

B = 1, (2 − m)D2 = −2a, 4(2 − m)cA2 = m2a,

b2 = 4ac, b = −4cF. (112)

Thus this solution is valid provided a < 0, c < 0 while b could be either positive or negative.
In the limit m = 1, the periodic solution (111) goes over to the dark soliton solution

φ = F +
A tanh(Dx + x0)

1 + Bsech(Dx + x0)
, (113)

provided

B = 1, D2 = −2a, 4cA2 = a, b2 = 4ac, b = −4cF. (114)

Thus, the dark soliton solution exists to field equation (100) provided a < 0, c < 0 while b
could have either sign.

Solution V
It is easily shown [9] that

φ = F +
Acn(Dx + x0,m)√

1 − m + Bdn(Dx + x0,m)
(115)

is an exact solution to the field equation (100) provided the parameters satisfy the same
constraints as given by equation (112). Thus, this solution is valid provided a < 0, c < 0
while b could have either sign.

In the limit m = 1, the periodic solution (115) goes over to a constant, i.e.

φ = F + A, (116)

where F,A are as given by equation (114).

Solution VI
It is easily shown [9] that

φ = F +
A tanh(Dx + x0)

1 + B tanh(Dx + x0)
(117)

is an exact solution to the field equation (100) provided

2D2 = −a, A = F(1 − B), b2 = 4ac, Fb = −(1 + B)a. (118)
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Thus, this solution is valid provided a < 0, c < 0 while b could be either positive or negative.

Solution VII
It is easily shown [9] that

φ = Asech(Dx + x0)

1 + Bsech(Dx + x0)
(119)

is an exact solution to the field equation (100) provided

A = −2a√
b2 − 4ac

, D2 = −2a, B = b√
b2 − 4ac

. (120)

Thus this solution is valid provided a < 0 while b, c could have either sign. In particular,
if c > 0 then b can have either sign while if c < 0 then b > 0. This solution can also be
rewritten as

φ = −2a

b +
√

b2 − 4ac cosh[
√

2a(x + x0)]
. (121)

Solution VIII
It is easily shown [9] that

φ = F +
Asech(Dx + x0)

1 + Bsech(Dx + x0)
(122)

is also an exact solution to the field equation (100) provided

A = − 4a + 3bF√
b2 + 2bcF

, D2 = 3bF + 4a, B = − b + 4cF√
b2 + 2bcF

. (123)

Thus this solution is valid provided b > 0, c < 0 while a > (< or =)0 depending on if
m < (> or =)1/5.

Solution IX
It is easily shown that

φ = Ax2 + B

Dx2 + E
(124)

is an exact solution to the field equation (100) provided

AE = −3BD,
A

B
= −4a

3
, 9b2 = 32ac,

A

D
= −4a

3b
. (125)

Thus this solution is only valid if a > 0, c > 0 while b could be either positive or negative.

Appendix B. Solutions of φ2-φ4 and hence standard (cubic) NLS model

Finally, for completeness, we consider solutions of field equation (12) in the case b = 0. As
explained above, once these solutions are obtained, then the solutions of the standard (cubic)
NLS equation are immediately obtained from here by using equations (1), (2) and (11). We
list below three distinct periodic solutions to the field equation (12) with b = 0. In each case,
we also mention the values of the parameters a and c, in particular, if they are positive or
negative. However, instead of equation (12) (with b = 0), we use a slightly different form
given by

φxx + 2aφ + 4cφ3 = 0. (126)
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This is done so that one can easily pick up the solutions recently obtained by us in a related
paper on coupled φ2-φ4 field theory [10].

Solution I
It is easily shown [10] that

φ = Asn(Bx + x0,m) (127)

is an exact solution to the field equation (126) provided

(1 + m)B2 = 2a, (1 + m)cA2 = −ma. (128)

Thus, this solution is valid provided a > 0, c < 0.
In the limit m = 1, the periodic solution (127) goes over to the dark soliton solution

φ = A tanh(Bx + x0), (129)

provided

B2 = a, 2cA2 = −a. (130)

Thus the dark soliton solution exists to field equation (126) provided a > 0, c < 0.

Solution II
It is easily shown [10] that

φ = Acn(Bx + x0,m) (131)

is an exact solution to the field equation (126) provided

(2m − 1)B2 = −2a, (2m − 1)cA2 = −ma. (132)

Thus this solution is valid provided c > 0 while a < (> or =)0 depending on if m > (< or
=)1/2.

In the limit m = 1, the periodic solution (131) goes over to the bright soliton solution

φ = Asech(Bx + x0), (133)

provided

B2 = −2a, cA2 = −a. (134)

Thus the bright soliton solution exists to field equation (126) provided a < 0, c > 0.

Solution III
It is easily shown [10] that

φ = Adn(Bx + x0,m) (135)

is an exact solution to the field equation (126) provided

(2 − m)B2 = −2a, (2 − m)cA2 = −a. (136)

Thus this solution is valid provided a < 0, c > 0.
In the limit m = 1, the periodic solution (135) goes over to the bright soliton solution

(133) and hence satisfies constraints given by equation (134).
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